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I. Introduction 

The phase space region occupied by an aggregate of charged 

particles in a beam line is often represented by a higher 

dimensional ellipsoid. Given no further information, one 

might interpret such an ellipsoid as an envelope inside of which 

particles are distributed uniformly, or as giving the scale 

dimensions of a gaussian distribution. The latter case has 

the advantage that is easily adapted to include higher order 

effects of the beam line. In either case the parameters of 

the ellipsoid are simply related to the first and second moments 

and therefore the width of the distribution in any coordinate. 

In first order an ellipsoid at any point in a beam line is 

transformed into another ellipsoid at any other location in a 

beam line. In second and higher orders a transformation from 

one location in a beam line to another will cause the ellipsoid 

to become distorted. One can still, however, calculate the 

first and second moments of the distribution, and thereby 

obtain a measure of its dimensions in any coordinate. 

Below we elaborate on the methods for calculating the 

ellipsoid parameters at any point in the beam line. Much 

of the first order theory can be found in the work of Brown 

and Howry. 1 It is included here for completeness. 
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II. The Ellipsoid Formalism 

The position and motion of a particle in a beam line may 

be represented via a six-dimensional vector. 

The coordinates x and y represent respectively the 

(1) 

horizontal and vertical displacements at the position of the 

particle, 0 and I$, the angles with the axis of the beam line 

in the same planes. The quantity 9, represents the longitudinal 

position of the particle relative to a particle traveling on 

the magnetic axis of the system with the central momentum 

designed for the system. The remaining quantity 6 = F 

gives the fractional deviation of the momentum of the particle 

from the central design momentum of the system. 

An ellipsoidal hypersurface in this six-dimensional space 

may be represented by the equation: 

T -1 
X5 x=1 (2) 

where 0-l is a symmetric positive definite matrix. We represent 

this matrix as an inverse for reasons which will become apparent 

later. At this stage the center of the ellipsoid is assumed 

to lie at the origin of the-coordinate system. The ellipsoid 

may be taken to be the envelope of a uniform distribution, or 

the scale in a gaussian distribution, giving a particle density: 

p = C exp(-JrxTs --lx) (3) 



-3- FN-243 
2042 

For any real symmetric matrix there exists a coordinate 

system in which that matrix is diagonal and an orthogonal 

transformation to that coordinate system. 2 Let us represent 

the orthogonal transformation by the matrix 0, so that: 

X. 1 = x oij 2. (4) 
j I 

where 2. are the coordinates in the frame where the transform of 
u-1 ' and therefore that of CJ are diagonal. Calling the matrix c 

transformed to the new frame : we now have: 

OjQ 

and equation (1) becomes 

r"xT 2-1 % x=1 

Specializing to the gaussian distribution, it is now an easy 

matter to calculate the second moments in the new frame since 

(la) 

the coordinates are decoupled. We arrive at: 

%% % 'Ir X.X. = 5.. = 6.. 5.. 
= 3 13 11 71 

The second moments in the old frame are now: 

X.X. = c 0. 0. kQ rk JR $2 
%ll, 

17 k % = iRoik 'j.Q. xkXI 

= c Oik 0. 2kQ = 5. 
kR IQ lj' 

(6) 

(7) 

Therefore in this case the elements of the matrix CI give the 

second moments of the distribution in the original coordinate 

system. The density function, properly normalized, now becomes: 

NO 
T -1 

P = exp(-+x c x) (8) 

Jdet(a) (2~)~ 

where N o is the total number of particles. Since the matrix 

0 is orthogonal the determinants of u and 2 are equal. 
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The elements of the matrix s may be put in more convenient 

form for interpretation. The square roots of the diagonal 

elements may be taken as giving the half widths x0 of the 

distribution in a given coordinate while the off-diagonal elements 

may be related to the correlations r.., so 

I' xoi = ~\/a;---- 
ii 

rij = uij/+iiiCj (9) 

Since, for any positive definite symmetric matrix c, we have: 2 

5,. CT.. - 5.. 2 
3.1 31 11 

> 0 (101 

the correlations must all obey the inequality 

lrijl < l (11) 

If the ellipsoid is interpreted as describing the envelope 

of a uniform distribution, then the x oi represent the maximum 

extents of the beam in the given coordinates. 

III. The Effect of a Beam Line 

A. First Order 

If we now let xil) be the coordinates of a ray at the 
(2) initial point in a beam line, and x. 1 the coordinates at some 

later point, the two are related by the equation: 

x!2) = 
1 

1 Rij x;l) 
j 

(12) 

If we continue to assume a distribution centered at the origin 

the first moments at both initial and final point will be zero. 

The second moments will now be given by: 
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17 i 1 

=c RikR. 
kQ ,Q Xk XQ 
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(13) 

=C RikR. (1) 
kQ IQ ckQ 

or more concisely 

5 
(2) = Ru(l)RT (14) 

To first order an ellipsoid at the initial point will 

transform into an ellipsoid at the final point, so that the 

equation: 

x(2)T(u q-1 x(2) = 1 (15) 

will give the envelope of the particle distribution at the later 

point. 

B. Second Order 

In second order the transformation on the coordinates 

effected by the beam line is given by: 

x!~) = Z R.. x!l) + Z 1 j 'I 7 jk 
Tijk ,:l' ~11% (16) 

We employ here a symmetric T matrix whose off-diagonal elements 

are half those of the T matrix used by Brown. The first and 

second moments of the distribution at the final point are now 

given by: 

P= ZR..p+C T 1 j '1 3 jk 

X! 
2) (2) (1) (1) 

I. x. = 
3 

C Rik R. 
kQ ,Q Xk XQ 

+ c 
kQm 

f z 
kQmn 

,. 

/Rik TjQm + TikQ 'jm x( 1) (1) 
k XQ 

(1) 
xm 

T ikQ Tjmn x111) ,jl) xil) xr(llr 

(17) 
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For a symmetric, on-axis initial distribution, the first and 

third moments vanish. The problem now reduces to determining 

the fourth moments of the initial distribution. 

As an extension of previous notation we now denote the 

fourth moments of the distribution about the initial point by 

o(l) i3kQ' We consider the coordinate system in which the matrix of 

second moments uij is diagonalized, denoting the moments in 

this frame by 2. Then from equation (7) we have: 

aij = c Oik 0. ;kQ 
kQ IQ 

= c Oik 0. 
k 3k 'kk 

(18) 

We continue to specialize to a gaussian distribution SO that 

the fourth moments will be directly derviable from the second 

moments. In the diagonal frame the coordinates separate, and 

the fourth moments are easily calculated. The only ones which 
'L % are non-zero are c... iijj' cijij' or ;4 ijji for i # j, and :iiii 

with: 

% % CT.... = 
x=33 

oii %.. 
73 

21 is. . 
1311 

= ki ;.. 
13 

% cr.... =;. 
1311 ii 'jj 

% s. iiii = 3 sii Sii 

so that in general: 

(19) 

% % % 
'ijkQ = Aij AkQ uii Okk +6 6 :. 2 ik jQ ii jj 

f AiQ 6. ;ii:.. 
lk 13. (20) 
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Now if under the transformation 0, the fourth moments transform 

as: 

c Oim 0. 
‘i, 

'ijkQ = 
mnop In 'ko 'Qp 'mnop (21) 

then from equation (la) we finally arrive at: 

UijkQ = Dij UkQf Uik aja + OiQ Ujk 

Substituting into equation (17) we determine that: 

iF=C T. (1) 
1 i3k sjk 

jk 

(22) 

(23) 

X! 
2) 

X! 
2) (1) 

1 3 
=C RikR. (l)) (C T. G(l)) 

kQ 1% 'kQ ' 'Ea. TikQ 'kQ mn ~mr, mn 

f2Z (c TikQ 0;;') (C Tjm o;;' ) 
Qm k n 

Note that, because of the symmetry properties of both T and a 

that the two expressions in parentheses in the last term of the 

second equation represent the same array. From a practical 

standpoint this means that it needs to be calculated only once. 

We see from equation (23) that the centroid of the distribu- 

tion at the final point no longer coincides with the beam axis. 

Letting cC2) represent the matrix of second moments about the 

new centroid we now have: 

oJ2) = x(2) x!2) 
lj i 1 

-cm~ 1 3 

=C RikR. (1) 
kQ IQ 'kQ 

+2c (c TikQ 0;;') (1 Tjmn 0;;') 
km k n 

(24) 

IV. Off-Axis Initial Distribution 

Now consider a gaussian distribution whose center does not 
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coincide with the beam axis. Letting the coordinates of the 

centroid by p 1 ' we have for the coordinates of a ray: 

,y = Ig- + 5(1) 
1 i i 

We let the matrix u represent the moments of the distribution 

about its centroid so that: 

SjIl’ ,y = o!l’ lj 
= .!I) 

IjkQ 

(26) 

Equation (17) continues to hold for the moments of the distribution 

about the b earn axis, while equation (22) holds for the moments 

about the centroid. We must therefore express one set of moments 

in terms of the other. 

Using equations (22), (251, and (26) and applying the first 

part of equation (24) to the initial distribution, the initial 

third and fourth moments are given in terms of the initial 

first and second moments as follows: 

(1) 
X. X! 

1) (1) 
1 7 Xk 

(1) (lI- 
Xk XQ 

= s x !l) (l) + FJ x!l) (l) 1 1 Xk 1 1 Xk 

+Jyx!l) x!l) - 2 p p- p 
1 7 1 I 

(27) 

Substituting into equation (17) and rearranging terms we arrive 

at the following expressions for the first and second moments 

of the distribution at the final point. 
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p = C R.. p + C Tijk x;') XL') 1 j 'I I jk 
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(28) 

(2) 
X. X! 

(1) (1) t,!",x!2) - 2 1 
1 

2, = C Rik R. 
kQ 

]Q Xk XQ 1 3 xi2) xi2) 

+ 2 1 (RiQ p + ; TikQ x;l) x;l)) (Rjm XT t 
Qm 

C T. (1) 
n ,mn XQ 

x 1) ; ) - (C Rik p, CC Rjm p) 
k m 

where 

Xi2) = C R I. k ik 7.X 
kQ 

is the image of the original centroid. 

We may now again use equations (9) and (24) to relate this 

matrix of second moments to the final beam half widths and 

correlations. 
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